Agnostic Boosting

نویسندگان

  • Shai Ben-David
  • Philip M. Long
  • Yishay Mansour
چکیده

We extend the boosting paradigm to the realistic setting of agnostic learning, that is, to a setting where the training sample is generated by an arbitrary (unknown) probability distribution over examples and labels. We deene a-weak agnostic learner with respect to a hypothesis class F as follows: given a distribution P it outputs some hypothesis h 2 F whose error is at most erP(F) + , where erP (F) is the minimal error of an hypothesis from F under the distribution P (note that for some distributions the bound may exceed a half). We show a boosting algorithm that using the weak agnostic learner computes a hypothesis whose error is at most maxfc1()er(F) c 2 () ; g, in time polynomial in 1==. While this generalization guarantee is significantly weaker than the one resulting from the known PAC boosting algorithms, one should note that the assumption required for-weak agnostic learner is much weaker. In fact, an important virtue of the notion of weak agnostic learning is that in many cases such learning is achieved by eecient algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution-Specific Agnostic Boosting

We consider the problem of boosting the accuracy of weak learning algorithms in the agnostic learning framework of Haussler (1992) and Kearns et al. (1992). Known algorithms for this problem (BenDavid et al., 2001; Gavinsky, 2002; Kalai et al. , 2008) follow the same strategy as boosting algorithms in the PAC model: the weak learner is executed on the same target function but over different dis...

متن کامل

Optimally-Smooth Adaptive Boosting and Application to Agnostic Learning

We describe a new boosting algorithm that is the first such algorithm to be both smooth and adaptive. These two features make possible performance improvements for many learning tasks whose solutions use a boosting technique. The boosting approach was originally suggested for the standard PAC model; we analyze possible applications of boosting in the context of agnostic learning, which is more ...

متن کامل

Communication Efficient Distributed Agnostic Boosting

We consider the problem of learning from distributed data in the agnostic setting, i.e., in the presence of arbitrary forms of noise. Our main contribution is a general distributed boosting-based procedure for learning an arbitrary concept space, that is simultaneously noise tolerant, communication efficient, and computationally efficient. This improves significantly over prior works that were ...

متن کامل

Potential-Based Agnostic Boosting

We prove strong noise-tolerance properties of a potential-based boosting algorithm, similar to MadaBoost (Domingo and Watanabe, 2000) and SmoothBoost (Servedio, 2003). Our analysis is in the agnostic framework of Kearns, Schapire and Sellie (1994), giving polynomial-time guarantees in presence of arbitrary noise. A remarkable feature of our algorithm is that it can be implemented without reweig...

متن کامل

A Boosting Framework on Grounds of Online Learning

By exploiting the duality between boosting and online learning, we present a boosting framework which proves to be extremely powerful thanks to employing the vast knowledge available in the online learning area. Using this framework, we develop various algorithms to address multiple practically and theoretically interesting questions including sparse boosting, smooth-distribution boosting, agno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001